Approximating the Riemann-Stieltjes integral via some moments of the integrand

نویسندگان

  • Pietro Cerone
  • Sever Silvestru Dragomir
چکیده

Error bounds in approximating the Riemann-Stieltjes integral in terms of some moments of the integrand are given. Applications for p convex functions and in approximating the Finite Foureir Transform are pointed out as well. 1. Introduction In order to approximate the Riemann-Stieltjes integral R b a f (t) du (t) with the arguably simpler expression (1.1) u (b) u (a) b a Z b a f (t) dt; where R b a f (t) dt is the Riemann integral, Dragomir and Fedotov [8] considered in 1998 the following Grüss type error functional: (1.2) D (f; u; a; b) := Z b a f (t) du (t) 1 b a [u (b) u (a)] Z b a f (t) dt: If the integrand f is Riemann integrable and 1 < m f (t) M < 1 for any t 2 [a; b] while the integrator u is L Lipschitzian, namely, (1.3) ju (t) u (s)j L jt sj for each t; s 2 [a; b] ; then the Riemann-Stieltjes integral R b a f (t) du (t) exists and the following bound holds: (1.4) jD (f; u; a; b)j 1 2 L (M m) (b a) : In (1.4) the constant 1 2 is best possible in the sense that it cannot be replaced by a smaller quantity. A di¤erent bound for the Grüss error functional D (f; u; a; b) in the case that f is K Lipschitzian and u is of bounded variation has been obtained by the same authors in 2001, see [9], where they showed that (1.5) jD (f; u; a; b)j 1 2 K (b a) b _ a (u) : Here Wb a (u) denotes the total variation of u on [a; b] : The constant 1 2 is also best possible. Date : March 2, 2007. 2000 Mathematics Subject Classi…cation. 26D15, 41A55.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error bounds in approximating the Riemann-Stieltjes integral of Cn+1-class integrands and nonsmooth integrators

In the present paper we investigate the problem of approximating the Riemann-Stieltjes integral R b a f ( ) du ( ) in the case when the integrand f is (n+ 1)-time di¤erentiable (n 0) and the derivative f (n+1) is continuous on [a; b], while the integrator u is Riemann integrable on [a; b] : A priory error bounds for di¤erent classes of functions are provided.

متن کامل

On Approximation of the Riemann–stieltjes Integral and Applications

Several inequalities of Grüss type for the Stieltjes integral with various type of integrand and integrator are introduced. Some improvements inequalities are proved. Applications to the approximation problem of the Riemann–Stieltjes integral are also pointed out.

متن کامل

Some Inequalities Relating to Upper and Lower Bounds for the Riemann––stieltjes Integral

Some new inequalities are obtained relating to the generalized trapezoid and midpoint rules for the Riemann–Stieltjes integral with a convex integrand and monotone nondecreasing integrator. Results are deduced for the special case of weighted Riemann integrals. Mathematics subject classification (2000): Primary 26D15, Secondary 26D10..

متن کامل

Approximating the Riemann-Stieltjes integral by a trapezoidal quadrature rule with applications

In this paper we provide sharp bounds for the error in approximating the Riemann-Stieltjes integral R b a f (t) du (t) by the trapezoidal rule f (a) + f (b) 2 [u (b) u (a)] under various assumptions for the integrand f and the integrator u for which the above integral exists. Applications for continuous functions of selfadjoint operators in Hilbert spaces are provided as well. 1. Introduction I...

متن کامل

The Beesack-Darst-Pollard inequalities and approximations of the Riemann-Stieltjes integral

Utilising the Beesack version of the Darst-Pollard inequality, some error bounds for approximating the Riemann-Stieltjes integral are given. Some applications related to the trapezoid and mid-point quadrature rules are provided.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mathematical and Computer Modelling

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2009